在该研究中,研究人员首先在理论上预言了在一大类共线反铁磁体中可以存在一类新的具有拓扑性质的磁激发,称之为狄拉克型磁激发。在此类反铁磁体中的自旋波激发构成一条条能带,而这些能带在三维磁布里渊区中是可以相交的。此类交点是一类被共线反铁磁基态的沿着排列方向的自旋旋转对称性(简称“自旋对称性”)和时间反演-空间反演联合操作下的不变性(简称“时空对称性”)保护的新型狄拉克点,且该狄拉克点不同于之前在电子系统中研究的狄拉克点。前者可以出现在布里渊区的任意位置,而后者只能出现在高对称点或者高对称线上。
研究人员注意到,当考虑实际系统中自旋相互作用对理想海森堡模型的修正时,Dyaloshinsky-Moriya相互作用(DMI)会引入非共线的微扰。在这一微扰下,自旋对称性被破坏,而时空对称性依旧保持。同时,每个狄拉克点会“分裂”成一条“线节点”(即两条自旋波能带在某条线上有着相同的激发能量)。这类线节点拥有电子系统中尚未发现的某种新的Z2拓扑数,称之为拓扑线节点。
为了将该理论与实验和实际材料相结合,研究人员预言在一种反铁磁体(Cu3TeO6)中将可以观测到上述新型拓扑能带交点。首先,他们用海森堡J1-J2模型预言了狄拉克点的位置,随之将DMI作为围绕引入狄拉克点附近的有效理论,证实了线节点的存在,并证明线节点的长度正比于DMI的平方。
相关研究成果发表在《物理评论快报》上。该研究得到了国家自然科学基金、科技部重点研发计划、中科院战略性先导科技专项等的资助。
11-01 来源:中国科学院|编辑:确牛
11-05 来源:中国科学院|编辑:确牛
11-01 来源:中国科学院|编辑:确牛
11-05 来源:中国科学院|编辑:确牛
10-31 来源:中国科学院|编辑:确牛
05-02 来源:科普时报|编辑:确牛
11-04 来源:中国科学院|编辑:确牛
11-01 来源:中国科学院|编辑:确牛
11-01 来源:中国科学院|编辑:确牛
11-01 来源:中国科学院|编辑:确牛